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Abstract

The effect of a viscoelastic substrate on an elastic cracked layer under an in-plane concentrated load is solved and
discussed in this study. Based on a correspondence principle, the viscoelastic solution is directly obtained from the
corresponding elastic one. The elastic solution in an anisotropic trimaterial is solved as a rapidly convergent series in
terms of complex potentials via the successive iterations of the alternating technique in order to satisfy the continuity
condition along the interfaces between dissimilar media. This trimaterial solution is then applied to a problem of a thin
layer bonded to a half-plane substrate. Using the standard solid model to formulate the viscoelastic constitutive
equation, the real-time stress intensity factors can be directly obtained by performing the numerical calculations. The
results obtained in this paper are useful in studying the problem with bone defects where a crack is assumed to exist in
an elastic body made of the cortical bone that is bonded to a viscoelastic substrate made of the cancellous bone.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Prediction of the time-dependent failure behavior of viscoelastic structures has aroused much attention
because these components have been widely used in numerous engineering designs in recent years. Thin film
and substrates can be treated as important components in many applications including mechanical devices,
electronic substrates, medical engineering and building structures. Defects like cracks in these components
are inevitable and affect the performance of the system. For example, cracks in the thin film can have a
strong adverse effect on the strength of semiconductor materials. When the viscoelastic effects are involved
in the analysis, it is well known that there exists a correspondence principle provided that the Laplace
transforms of the linear viscoelastic equations are identical to the elastic equations where the constant
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elastic moduli are replaced by the corresponding transform viscoelastic moduli. However, the real-time
solution to the crack-tip field of a dissimilar media is by no means straightforward. Hence, due to the
complication of the inverse Laplace transform, most studies have focused on the anti-plane problem in
order to simplify the calculation for the real-time response.

The crack problem of dissimilar media in plane elasticity has been studied and collected in the literature.
Miller (1989) analyzed the problem of cracks near interfaces between dissimilar anisotropic materials by
using the complex variable formulation of Leknitskii (1963). Suo (1990) provided a formal treatment of
interfacial crack problems involving singularities embedded in an anisotropic media by using the formal-
isms derived from Leknitskii (1963), Eshelby et al. (1953), and Stroh (1958). When the problem with
multiple layered media is considered, an exact solution satisfying all the interface boundary conditions is
impossible to achieve. To treat this complicated problem, the alternating technique is used to look for a
series solution by successive approximations, which resembles the method of images in potential theory, in
which an infinite number of image singularities are constructed. For example, Chao and Kao (1997)
analyzed an isotropic trimaterial under an anti-plane concentrated force through iterations of Mobius
transformation. Choi and Earmme (2002a,b) used the alternating technique to analyze the effects of sin-
gularities interacting with interfaces in an anisotropic and an isotropic trimaterial.

As to viscoelastic materials, Atkinson and Bourne (1989) applied an integral transform method to study
the problem of a semi-infinite crack meeting an interface between dissimilar isotropic viscoelastic materials
under anti-plane strain deformation. Ryvkin and Banks-Sills (1993, 1994) determined the mode-II stress
intensity factor for a crack propagating steadily between two-bonded viscoelastic infinite strips by using
both Maxwell’s model and the standard solid model to simulate the viscoelastic behavior. Atkinson and
Chen (1996) studied the anti-plane analysis of a crack lying in a viscoelastic layer embedded in a different
viscoelastic medium. More recently, Chang (2002) studied the influence of various bonded layers on stress
intensity factors of an inclined crack lying in a viscoelastic multi-layered medium under an anti-plane
concentrated load. Chang et al. (2001) discussed the effect of a viscoelastic substrate on a cracked body
under an in-plane concentrated load.

In this study, we use an alternating technique to solve the in-plane stress intensity factor of a crack lying
in an anisotropic elastic thin layer bonded to a viscoelastic substrate. The solution associated with sin-
gularities in dissimilar media is derived from that associated with singularities in the corresponding
homogeneous medium. With the aid of the dual coordinate transformation, a singular integral equation is
solved to obtain the asymptotic solution to a crack with arbitrary orientations. Using the standard solid
model to simulate the viscoelastic constitutive equation and applying an inverse Laplace transform by the
aid of Mathematica software, the real-time stress intensity factors are determined. Numerical examples of
a crack located arbitrarily in a thin layer made of the cortical bone bonded to a viscoelastic substrate made
of the cancellous bone are considered and discussed in detail.

2. Basic formulation for two-dimensional anisotropic elasticity

The generalized Hook’s law connecting strains ¢, and stresses a,, for an anisotropic elastic material can
be expressed in the following forms (Leknitskii, 1963):

Em = SmnOn (man:132737"'76)7 (1)
where s,,, denotes the second-order compliance tensor. The standard correspondent strains and stresses are
T
{Sm} = {811,8227833,2623,2831,2812} (2)
T
{O'n} = {011,02270'337023,0317012}

where the superscript T denotes the transpose of a matrix. The well-developed two-dimensional anisotropic
elastic field can be represented by a stress function involving three stress functions as (Leknitskii, 1963)
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f(2) = [fi@1), fo(22), fo(z)]) 3)
with the arguments

Zy =X+ X2, (2=1,2,3) (4)
where the elastic eigenvalues p, (o = 1,2, 3) have to satisfy the sixth-order characteristic equation

L()la(p) = B3(w) =0 (5)
with

L (1) = 544 — 254510 + S55
I(p) = —s24 + (525 + sa6)pt — (514 + S56) 1> + S151° (6)
L4(p) = s22 — 250611+ (2812 + S66)1” — 2161 + s11 44

The traction and displacement on the x,-plane of two-dimensional anisotropic elasticity can be written as
t = [o21,00m,00]" = 2R{L;f/(z;)}
u=[ur,1,u5]" = 2R{4y,f3(z)}

where i = j = 1,2,3 and R denotes the real part of the complex function. The 3x 3 matrices 4 and L
associated with the elastic constants are defined as (Leknitskii, 1963)

()

M My 33

L={L;}=| 1 1 1 (8)
M =M -1
Ay A A
A={4;} = | A An Ax (9)
Az Axn An
where

A = supg + s — Sy + 1y (s154y — 14)
Aoy = o1y + 522/ — S26 + 1y (525 — 524/ 111)
A3 = Sy + Sa2/ 1y — Sas + 11 (Sas — Saa/ 1)
Ay = 115 + 512 — Si6ky + Ny (S151 — S14)
A = 215 + 522/ 1y — 526 + 15825 — 524/ 112)
Az =S4y + 52/ Wy — Sa6 + My (a5 — 544/ 112)
Ay = ny(su g5 + S12 — Si6k) + S1spy — Sia
Az = ny(saufts + 52/ 1y — S26) + 525 — 24/ U3
Azs = n3(sas + Sa2/ M3 — Sa) + Sas — Saa/ s

and

m= _13(,111)/12(#1)
= —1()/ (1)
ny = —13(13)/1a(pss)

Hereafter, the boldface is used to represent a vector or a matrix throughout this paper unless stated
otherwise.
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2.1. Singularities in a homogeneous medium

Consider a homogeneous medium subjected to a dislocation line, with Burger’s vector b and a line force
P, in the direction perpendicular to x; — x; plane. The stress function of the isolated singularity at the point
(xp1,xp2) in an infinite homogeneous medium is (Eshelby et al., 1953)

fo2) = qIn(z —2°), 2 =xp1 + w0 (10)
The complex coefficient vector ¢ is defined as
— 1 -1 ! —1\—1
qun(L (B+B)'b—AB) p) (11)

where b=ut —u,p=1t —t" and B=idAL".

Next, consider a crack of length 2a lying along the x;-axis subjected to an arbitrary self-equilibrated
traction #(x;) prescribed on its surfaces. This crack problem leads to a Hilbert problem and the singular
stress function can be expressed as (Muskhelishvili, 1953)

f 2@ [T 1(8)dE
Y30 ="t | o= -
where the plemelj function y(z) is defined as
1) = (z—a) Hz+a)” (13)

For the problem with various crack orientations, a new coordinate system is defined such that its origin
is translated to the central point of the crack (x.1,x.,) and then rotated by an angle 6 with respect to x;-axis,
as shown Fig. 1. The singular stress function of this new coordinate system can be determined by using
the coordinate transformation, which is expressed as (Ting, 1986)

) [T (O
L&) =" / (O —2) (14

where the superscript * denotes the variable with respect to the new coordinate. The formula of coordinate
transformation can be shown as

X =Rylxj —xy), i=j=12,3 (15)

Note that x; and x; represent the new and old coordinate system, respectively and x.; denotes the origin of
the new coordinate system with respect to the old coordinate system. Then, the coordinate rotation
coefficient can be expressed as

(X1, Xe2)

X4

Fig. 1. Oblique crack coordinate system.
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o cos sinf 0
R={R;} = [6 i] = | —sinf cos® 0 (16)
X 0 0 1

The complex variable z* in the new coordinate system is defined as
Z =x]+pxs (e=1,2,3) (17)
with L' = RL, A" = RA, 1 = "=520 o = 1,2,3,
The asymptotic solution to the crack tip is of interest for the crack problem. The conventional definition
of stress intensity factors is given by (Irwin, 1957)

K= [K]] K[ K][] ]T = 11118 V2nrt* (18)

where r = x| — a denotes the radius ahead the crack tip at xj = a, and
" =2R{Lf; (=)} (19)

which represents the traction along x}-axis. Substituting Eq. (19) into Eq. (18) with the aid of Eq. (14), the
stress intensity factor can be expressed as

o1 fate,
K-— [ [ (20)

From Eq. (20), the traction prescribed on the crack surface needs to be determined before solving the
asymptotic solution of the crack tip.

2.2. Singularities in a bimaterial

The solution of singularities in a bimaterial problem can be directly obtained from the substitution of the
solution to that associated with an infinite homogeneous medium by using the technique of analytical
continuation. If the singularities, and f,(z) for the same singularities embedded in an infinite homogeneous
medium, are taken to be in the upper half space of the bimaterial (see Fig. 2), then the solution can be
assumed as

flo) = {ﬁzgg +fo(2) jg Z (21)

X3

. 3
Region a Singularity

X4

Region b

Fig. 2. A singularity in a bimaterial.
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where f,(z) and f,(z) are the corresponding analytic functions in the upper half space (region @) and lower
half space (region b), respectively. Assume that the bonding of interface is perfect, then the traction (or
resultant force) and displacement across the interface must be continuous. From Eq. (7), it requires that

L,[f (x1) + fo(x)] + Lo[f . (x1) + fo(x1)] = Ly fo(x1) + Luf (x1)
A[f (1) + fo ()] + Aulf ,(x1) + fo(x1)] = Aufo(x1) + Apf(x1)

where the suffix @ and b indicate the material properties of upper (a) and lower (b) half space, respectively.
One of the important properties of analytical (holomorphic) functions used in the method of analytical
continuous is that if ¢(z) is analytical in an upper half space (or a lower half space), then ¢(z) is analytical
in a lower half space (or an upper half space). Use of the method of analytical continuation and application
of Eq. (22) leads to

fu2)=Vwfolz) z€a
{f;,(z> = Ubaf(;(z) zeb (23)

(22)

where

Vie=L, (By+B,) (B, — By)L,

Uw,=L;'[I + (B, +B,) ' (B. — B,)|L.

with B, =id,L,', B, = i4,L,".

Substitution of Eq. (23) into Eq. (22) gives the complete solution to a bimaterial subjected to singularities
in the upper half space. If a bimaterial is subjected to singularities in the lower half space, the solution can
be assumed as

(£ z€a
1) = {mz) +fole) zeb 24)

and one finds, by the similar procedure,

fa(z) = Ualzf()(z) zea
{fb(z) =Vaufolz) z€b (25)

2.3. Singularities in a bimaterial with the interface at x, = h

Assume that regions a and » occupied with material a and b, are perfectly bonded along the interface
x, = h. With x; — x, coordinate system lying off the interface, it needs to reformulate the bimaterial solution
obtained in the previous section. The solution is also assumed as Eq. (21), in which f,(z) and f,(z) are
introduced to satisfy the continuity of tractions and displacements along the interface x, = 4. By applying
the same arguments used in Eq. (22) to the interface x, = A, one finds

{fa(z) = Viafolz = uh+ph) z€a (26)
fo(2) = Upafo(z — mh + p,h) z€b
Substitution of Eq. (26) into (21) gives the complete solution to a bimaterial subjected to singularities in the

upper half space. If a bimaterial with the interface at x, = % is subjected to singularities in the lower half
space, f,(z) and f,(z) are obtained as

{fa(z) =Uaufolz—uh+mh) z€a o
fo(2) = Vafolz — wh+ph) ze€b
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Substitution of Eq. (27) into (24) gives the complete solution to a bimaterial subjected to singularities in the
lower half space.

2.4. Singularities in a trimaterial with the interfaces at x, = 0 and x; = h

The alternating technique can be employed to analyze a singularity in a trimaterial with two parallel
interfaces at x, = 0 and x, = % (see Fig. 3). Since it is difficult to satisfy the continuity conditions along two
interfaces at the same time, the method of analytic continuation should be applied to two interfaces
alternatively.

Assume that regions a, b and ¢ occupied with material a, b and ¢, respectively are perfectly bonded along
the interfaces x, = 0 and x, = A (see Fig. 3). Consider that a trimaterial is subjected to singularities in region
b, the alternating technique is applied to solve the complete solution by considering the following steps.

First, we consider that regions a and b are composed of the same material b and region ¢ of material c.
Asin Eq. (21), if f,(z) is taken to be a homogeneous solution and f(z) and f,(z) are introduced to satisfy
the continuity of displacements and tractions across the interface x, = 0, Eq. (23) leads to

[1@) =Vafol@) +fo(z) z€aUb
{ch(Z) = Uufy(2) zEC (28)

Since this result is based on the assumption that region « is made up of material . The fields produced
by f,(z) cannot satisfy the continuity conditions at the interface x, = A, which lies between the material a
and b.

In the second step, regions b and ¢ are composed of the same material » and region a of material a. f(z)
in Eq. (28) having the singular points in region b U ¢ is treated as a homogeneous solution of material b.
fa1(2) and £, (z) are introduced to satisfy the continuity of displacements and tractions across the interface
x, = h, Eq. (27) leads to

{fal(z) = galzfl (Z_ ,uah +,leh) zea (29)
fbl(z) = Vahfl(zf,ubhﬁL/_lbh) zebUc

in which f,,(z) and f,,(z) can be expressed in term of f,,(z) through Eq. (28). Here f,(z — u,h + fi,h) =
f:(z =+ p,h). Since this result is based on the assumption that region ¢ is made up of material 5. The
fields produced by £, (z) cannot satisfy the continuity conditions at the interface x, = 0, which lies between
the material b and c.

Region a

-

i %
Region b Singularity
x1

Region ¢

Fig. 3. A singularity in a trimaterial.
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In the third step, regions a and b are composed of the same material » and region ¢ of material c. f,(z) in
Eq. (29) having the singular points in region a U b is treated as a homogeneous solution of material b. f,(z)
and f,,(z) are introduced to satisfy the continuity of displacements and tractions across the interface x, = 0.
Accordingly it can be shown from Eq. (23) that

f2(2) :Vcbjbl(z) z€aUb
{fcl (Z) = Ucbfb](z) zEc (30)

Since this result is based on the assumption that region « is made up of material . The fields produced
by f,(z) cannot satisfy the continuity conditions at the interface x, = A, which lies between the material a
and b.

In the fourth step, regions b and ¢ are composed of the same material » and region a of material a.
Repetitions of second and third step, the stress functions at the regions a, b and ¢ can be finally obtained as

fal(z)+fa2(z)+”' zea
f@) = f1@) +fn@) +f2(2) +fp(2)-- z€b (31)
fo@) +fa@) +falz) zec
If one expresses the stress functions in terms of f(z), Eq. (31) becomes
Ullb Zsozlfn(z - :uah + :ubh) zeca
£ = 4 S [£.0) + Va2 — wh+ 1uh)| zeb (32)

Uaf o) + UaVar 25,2, Vn(z — tph + l_lbh)} z€c
in which the recurrence formula for f,(z) is

L) £ Va2
f“”)‘{ﬁﬂmn@th+%m

3. Formulation of viscoelasticity

For a linear viscoelastic material, the strain or stress at any given time is the sum of the individual strain
or stress increments through the respective time intervals during which they have been applied. By
Boltzman’s superposition principle, the relationship between strain and stress can be written in the
hereditary integral (Christensen, 1982),

&;(t) = /t sk (t = &) dog (&) (34)

o0

where s is known as creep compliance which can be obtained by the creep test. Eq. (34) can also be
written as

%®=WWMM+A$MF@%®% (35)

fort>0and i, j,k=1,2,3, or in contracted form

%mzmwmm+AEm—@maM (36)

where m,n=1,2,...,6.
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Consider that any function g(¢) and define the Laplace transform of g(¢) as

i) - | " gl ds (37)

where p denotes the Laplace transform parameter. Taking the Laplace transform of Eq. (36), the strain—
stress relationship becomes

With the definition of Eq. (37), the viscoelastic field corresponding to Eq. (7) can be written as

(39)

where all coefficients in the Eq. (39) can be obtained by a simple alternation from the previous definition,
for example

2= x4 L (0=1,2,3) (40)

and

(i) la(f) = B(R) =0 (41)
where

Ly(jt) = 844 — 2845it + 855

73(.‘1) = =824 + (825 + Sa6)ft — (S14 + §s6)[° + 81510 (42)

74(@) = §yp — 28ft + (2812 + Se6) > — 281608° + §11 11

It is easily shown that the only difference between the viscoelastic and elastic representations is that §,,
appears in the viscoelastic set whereas s,,, appears in the elastic set. Taking the Laplace transform of the
viscoelastic set produces a set of equations which correspond in a one-to-one fashion to the elastic set. This
is called a correspondence principle (Christensen, 1982, 1984).

Referring to Fig. 4, consider a thin cracked layer (region b) bonded to a viscoelastic substrate (region c)
under an arbitrary concentrated force (P). By letting region a be non-existent, the problem of a trimaterial
subjected to singularities in region b is now reduced to the present problem of a thin cracked layer bonded
to a viscoelastic substrate under an arbitrary concentrated force. From the previous definition, the Laplace
transformed stress intensity factor is given as

K= lim V2mrt* (43)
where

= 29{{Z,’;f;(2)} (44)
with

(0= [0 + Vade e~ i + ) (4s)
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o|*e2) Region b

74NN
&K =

Region ¢

Fig. 4. A crack embedded in the thin layer medium with a half space substrate.

in which the recurrence formula for £ (2) is
P = {Ll&) + V@) o n=0 (46)
VcbVahfn(Z_ubh+#bh) n:1a2a3a"'

Note that the 3 x3 matrices I7ab and IA/d, in Egs. (45) and (46) are now defined as

~
~ =_1 ~

1 S -1/ BT
V=1L, (B.+ B, '(B,— B.)L,

Then, the real time stress intensity factor can be directly obtained by taking the inverse Laplace transform
of Eq. (43).
4. Numerical results

Applying the standard solid model to simulate the viscoelastic property, the constitutive equation in
Eq. (36) can be expressed as

() = s?n,,{o,,@) T /0 £t = @) dé} (47)
and
n= (Ss;;o_;mn)v f(t) _ e—t//l (48)

where 4 indicates the relaxation constant, s° and s> denote the creep compliance at # = 0 and time-elapse,
respectively. In the following discussion, we consider an elastic cracked layer made of the cortical bone
(region b) bonded to a viscoelastic substrate made of the cancellous bone (region ¢) subjected to a con-
centrated force (see Fig. 4). The material properties of the cortical bone and the cancellous bone are listed in
Table 1. Consider a transversely isotropic material, the elements of the compliance tensor can be expressed

as (Leknitskii, 1963)



C.C. Hsiao et al. | International Journal of Solids and Structures 41 (2004) 1435-1451 1445

Table 1
Material properties of a thin layer medium and a half space substrate
El (MPa) Ez (MPa) Vi2 V23 G12 (MPa)
Thin layer (Cortical bone) 20 10° 18.7x10° 0.24 0.29 4.6x10°
Substrate (Cancellous bone) 1x10° 0.8x10? 0.315 0.35 0.24x 103
A=n=1
El — V%ZEZ 1— V§3 V12(1 + V23)
SIIZT; S22 = B 512:S21=—E47
1 2 1 (49)
s 2(1 —+ V23) s s 1
Wy = = = —
E2 ’ 55 66 G12

where all other elements vanish. Note that the relationship in Eq. (49) can also apply to the viscoelastic
properties of the substrate if one replaces s, in Eq. (49) with s° .
In view of Eq. (20), Eq. (43) can be written as

e Y L) ‘TS
K_}.IE(} 2nrt = | a_gtp(é,p)df (50)

S—— =30
O—8—18 ¢=45
4 — O—0—0 p=60°

KK g=90°
popEaoEEaaEasEa888 8 8
BBZEEB
3 |
i MGOQSOWSWGSGW%i L
jﬂ
ooe'ew
o
X
<, |
4
1
0 1 T 1 1 1 1
0 1 2 3 4 5
t/A
Fig. 5. Mode-I stress intensity factor (K;) for various crack orientations subjected to a horizontal concentrated force (P = [—P;,0]) with

a/h =0.25.
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where ¢ (5 p) can be derived from Egs. (44)—(46). Then, the real-time stress intensity factor becomes

a+¢
k® m/ \fa—eh(end

(51)

where t;(¢, 7) is the inverse Laplace transform of i;(é, p)- For a linear viscoelastic problem, #,(&, 7) can be
found numerically by the direct inverse method (Christensen, 1982, 1962, 1996). However, the inverse
transform of the present complex equations is not easily treated using the direct inverse method. Hence, the
Mathematica software (Wolfram Research, USA) is used to solve the inverse Laplace transform in this
study. Having the function #,(¢,#) at hand, the stress intensity factor in Eq. (51) can be obtained numeri-

cally by dividing the integral path into 2n segments as

a(i+1)
a+¢ 7' o Ja+ &,
ﬁ/ Yia pétd:—m / Ve de
a+¢
:\/_Z (5 ””’/ Ya—z
e éi:a(i:])
_IZt;< +hb,t>[a Arcsm( >— a2—§f}
4= a &=2

+—+—+ 0=0°
O—2—% 9=30°
O—8—Hf =45
C—0-0 g=60°

Ye—F—%K —9o0°
0=90
R
-] *m**#**i&*
-
s S S *
2
60000000 o fe¥erel
o
<,
a H0688008600000000800868800008058 g a
) ©00000600000000
‘H\p++++++++
R S, .
R o
4 T
\ ‘ \ ‘ \ [ |
0 1 2 3 4 5

t/n

Fig. 6. Mode-II stress intensity factor (Kj) for various crack orientations subjected to a horizontal concentrated force (P

with a/h = 0.25.

(52)

= [_PUOD
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since t;(f, t) is continuous along the integral path —a < & < @ and the integral ffa va+&/a— EJE exists.
In Eq. (52), ks denotes any arbitrary point within each segment, i.e. 0 </ <a/n. It will show that the
numerical method in Eq. (52) produces a very good convergence in the following discussion for n = 100.

The main interest here is to analyze the bone defect where a crack is embedded in the cortical bone
bonded to the cancellous bone having a viscoelastic property. In the following discussion, the center of the
crack with length a/h = 0.25 is fixed at x.; = 0, x, = 0.5k and the concentrated force is located at xp; = 0,
xp2 = h (see Fig. 4). All the calculated results are, which are presented only at the right crack tip, evaluated
with terms up to n = 4 in Eq. (32). The normalized stress intensity factors K; and Ky versus the evolution of
time under a negative horizontal concentrated force (P = [—P;,0]) with the dimensionless factor
Ky = Py /2+/ma are shown in Figs. 5 and 6, respectively. For a given crack angle, as shown in Fig. 5, the K;
value converges to its long-time value as time elapses. This convergent value is treated as the elastic re-
sponse. It shows that the K| value increases with time until it approaches a long-time constant value for the
crack angle 0 = 30°, 0 = 45° and 0 = 60° while the K; value almost remains constant as time elapses for the
crack angle 0 = 90°. It is clear that the effect of cancellous bone is less significant for the stress intensity
factor K; when a crack is placed parallel or normal to the free surface under a horizontal concentrated
force. It also exhibits that, for various crack angles, the maximum K; value occurs at 6§ = 45° and the
minimum K; value at § = 0°. In contrast with the variation of Kj in the case of the horizontal loading, the
effect of cancellous bone is more significant for the stress intensity factor Ky when a crack is placed parallel
(0 = 0°) or normal (0 = 90°) to the free surface. In addition, the maximum Kj; value occurs at 0 = 0° and
the minimum occurs at 0 = 45°. The normalized stress intensity factors K; and Kj; versus the evolution of
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Fig. 7. Mode-I stress intensity factor (Kj) for various crack orientations subjected to a vertical concentrated force (P = [0, P»]) with
a/h =0.25.
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time under a vertical concentrated force (P = [0, P»]) are shown in Figs. 7 and 8, respectively. Fig. 7 shows
that, for a given crack angle 0 = 0°, 0 = 30° or 0 = 60°, the normalized Kj increases with time, reaches a
maximum value at a particular time and decreases with time until it approaches a long-time constant value.
This implies that K; has a maximum value during the evolution of time or the change of the substrate
strength. For various crack orientations, the maximum Kj value occurs at 0 = 0° and the minimum value
occurs at 0 = 90°. When the long-time value is considered, the maximum K7 value still occurs at 0 = 0°. The
normalized Kj; values are shown in Fig. 8, which remain nearly unchanged during the evolution of time for
the crack angle 0 = 0° and 0 = 90°. It means that the effect of cancellous bone is less significant for
the stress intensity factor Ky when a crack is placed parallel or normal to the free surface under a verti-
cal concentrated force. As in the case of Kj, where the maximum value occurred at 6 = 45° under a hori-
zontal concentrated force, the maximum Kj value is found to occur at 6 = 45° under a vertical
concentrated force.

In order to demonstrate the accuracy and convergence of our present derived solutions, we consider the
following two testing examples. First, we consider a dislocation in a Ge,Si,_, epilayer on a Si substrate. The
elastic constants of Ge, Si, and Ge,Si;_, with respect to the crystallographic axes, where x represents
the fraction of lattice sites occupied by Ge atoms, are given in Table 2 (Zhang, 1995). The image force in x;
direction per unit length of a dislocation in material b due to two parallel interfaces in a trimaterial is given
by
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Fig. 8. Mode-II stress intensity factor (Kj) for various crack orientations subjected to a vertical point force (P = [0,P;]) with
a/h=0.25.
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Table 2
Elastic constants of Ge, Si, and Ge,Si;_, in unit of GPa (Zhang, 1995) with respect to crystallographic directions
Crystal Cl] C12 Ca4
Ge 128.9 48.3 67.1
Si 165.7 63.9 79.6
Ge,Sij_, 128.9x + 165.7(1 — x) 48.3x + 63.9(1 — x) 67.1x + 79.6(1 — x)

fr= 2bRe{Lb<ub>

Vafo(s)+ D fols) + Var S fols — myh + ,h)

o0

} (53)

n=2 n=1

Fig. 9 displays the image force f>/fi.. exerted on the 60° dislocation for x = 0.1, 0.3 and 0.5 with {100}
plane epitaxy. The normalizing constant fi.. is the image force on the dislocation at a distance 4 from
{100} free surface in Si half space. The results in Fig. 9, which are evaluated with terms up to » =3 in
Eq. (32), agree very well with the Fig. 4 of Choi and Earmme (2002a).

Next, we consider a crack of length 2a embedded in an elastic isotropic homogeneous medium subjected
to a point force P acting on its surface. The exact solution for stress intensity factors at the right-hand tip
are given as (Sih et al., 1962)

K] 1—v K]]

1+x,/a
K, 200+v) K, \1T-x/a (54)

Normalized image forces, f,/f;

‘ +——+—+ x=0.1, {100} plane epitaxy
O———<> x=0.3, {100} plane epitaxy
‘ O—6—0© x=0.5, {100} plane epitaxy

0 0.2 0.4 0.6 0.8

Xpp ! h

Fig. 9. Normalized image forces versus the position of a dislocation.
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Table 3

Stress intensity factors for a vertical point force acting on the crack surface with v = 0.335
Xa Ki/K, Ku/K,
a Theoretical value Numerical value Error % Theoretical value Numerical value Error %
0 1.000 1.000 <0.1 —-0.249 —-0.246 1.3
0.1 1.106 1.106 <0.1 —-0.249 —-0.246 1.3
0.2 1.225 1.225 <0.1 -0.249 —0.246 1.3
0.3 1.363 1.363 <0.1 —-0.249 —-0.246 1.3
0.4 1.578 1.528 <0.1 —-0.249 —0.246 14
0.5 1.732 1.732 <0.1 —-0.249 —-0.246 1.4
0.6 2.000 2.000 <0.1 —-0.249 —-0.245 1.5
0.7 2.380 2.380 <0.1 —-0.249 —-0.245 1.6
0.8 3.000 3.000 <0.1 -0.249 —0.244 2.0
0.9 4.359 4.359 <0.1 —-0.249 —-0.240 34

Table 4

Stress intensity factors for a horizontal point force acting on the crack surface with v = 0.335
Xa Ki/K, Ku/K,
a Theoretical value Numerical value Error % Theoretical value Numerical value Error %
0 0.249 0.250 0.3 1.000 1.000 <0.1
0.1 0.249 0.250 0.3 1.106 1.106 <0.1
0.2 0.249 0.250 0.3 1.225 1.225 <0.1
0.3 0.249 0.250 0.3 1.363 1.363 <0.1
0.4 0.249 0.250 0.2 1.578 1.528 <0.1
0.5 0.249 0.249 0.2 1.732 1.732 <0.1
0.6 0.249 0.249 0.1 2.000 2.000 <0.1
0.7 0.249 0.249 0.1 2.380 2.380 <0.1
0.8 0.249 0.248 0.4 3.000 3.000 <0.1
0.9 0.249 0.244 1.9 4.359 4.359 <0.1

for a horizontal point force and

K; 1 +x,/a Ku 1—v (55)
K, l—-x,/a K,  2(1+v)

for a vertical point force, where K, = P/2+/ma and x, indicates the distance between the crack center and the
position of the point force P. Comparisons of the theoretical value and the present numerical long-time
value for the crack surface subjected a vertical and a horizontal point force are shown in Tables 3 and 4,
respectively. These results show that the numerical values of the present study are found to agree very well
with the analytical solution.

5. Conclusion

Based on the alternating technique and the method of analytical continuation, the solution to the
problem with singularities in an anisotropic trimaterial is provided in this study. The trimaterial solution
obtained here can be directly applied to the present problem with a thin layer bonded to a half-plane
substrate. With this fundamental solution, the stress intensity factors for the corresponding crack problem
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are determined by solving the singular integral equation. Based on a correspondence principle, the real-time
stress intensity factors for the corresponding viscoelastic problem can be obtained by taking the inverse
Laplace transform. Some typical examples, including various loading types and crack orientations, are
solved and discussed in detail. The results show that the effect of substrate is more (or less) significant for
the stress intensity factor Ky (or Kj) when the crack is placed parallel or normal to the free surface under a
horizontal concentrated force. In addition, the maximum K; (or Kjp) value is found to occur at 0 = 45° in
the case of a horizontal (or vertical) loading. The obtained results are useful in studying the problem with a
crack embedded in the cortical bone that is bonded to the cancellous bone having a viscoelastic property.
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