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Abstract

The effect of a viscoelastic substrate on an elastic cracked layer under an in-plane concentrated load is solved and

discussed in this study. Based on a correspondence principle, the viscoelastic solution is directly obtained from the

corresponding elastic one. The elastic solution in an anisotropic trimaterial is solved as a rapidly convergent series in

terms of complex potentials via the successive iterations of the alternating technique in order to satisfy the continuity

condition along the interfaces between dissimilar media. This trimaterial solution is then applied to a problem of a thin

layer bonded to a half-plane substrate. Using the standard solid model to formulate the viscoelastic constitutive

equation, the real-time stress intensity factors can be directly obtained by performing the numerical calculations. The

results obtained in this paper are useful in studying the problem with bone defects where a crack is assumed to exist in

an elastic body made of the cortical bone that is bonded to a viscoelastic substrate made of the cancellous bone.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Viscoelasticity; Bone structure; Layer problem; Crack; Stress intensity factors; Stress analysis
1. Introduction

Prediction of the time-dependent failure behavior of viscoelastic structures has aroused much attention

because these components have been widely used in numerous engineering designs in recent years. Thin film

and substrates can be treated as important components in many applications including mechanical devices,

electronic substrates, medical engineering and building structures. Defects like cracks in these components

are inevitable and affect the performance of the system. For example, cracks in the thin film can have a

strong adverse effect on the strength of semiconductor materials. When the viscoelastic effects are involved

in the analysis, it is well known that there exists a correspondence principle provided that the Laplace
transforms of the linear viscoelastic equations are identical to the elastic equations where the constant
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elastic moduli are replaced by the corresponding transform viscoelastic moduli. However, the real-time

solution to the crack-tip field of a dissimilar media is by no means straightforward. Hence, due to the

complication of the inverse Laplace transform, most studies have focused on the anti-plane problem in

order to simplify the calculation for the real-time response.
The crack problem of dissimilar media in plane elasticity has been studied and collected in the literature.

Miller (1989) analyzed the problem of cracks near interfaces between dissimilar anisotropic materials by

using the complex variable formulation of Leknitskii (1963). Suo (1990) provided a formal treatment of

interfacial crack problems involving singularities embedded in an anisotropic media by using the formal-

isms derived from Leknitskii (1963), Eshelby et al. (1953), and Stroh (1958). When the problem with

multiple layered media is considered, an exact solution satisfying all the interface boundary conditions is

impossible to achieve. To treat this complicated problem, the alternating technique is used to look for a

series solution by successive approximations, which resembles the method of images in potential theory, in
which an infinite number of image singularities are constructed. For example, Chao and Kao (1997)

analyzed an isotropic trimaterial under an anti-plane concentrated force through iterations of M€obius
transformation. Choi and Earmme (2002a,b) used the alternating technique to analyze the effects of sin-

gularities interacting with interfaces in an anisotropic and an isotropic trimaterial.

As to viscoelastic materials, Atkinson and Bourne (1989) applied an integral transform method to study

the problem of a semi-infinite crack meeting an interface between dissimilar isotropic viscoelastic materials

under anti-plane strain deformation. Ryvkin and Banks-Sills (1993, 1994) determined the mode-II stress

intensity factor for a crack propagating steadily between two-bonded viscoelastic infinite strips by using
both Maxwell�s model and the standard solid model to simulate the viscoelastic behavior. Atkinson and

Chen (1996) studied the anti-plane analysis of a crack lying in a viscoelastic layer embedded in a different

viscoelastic medium. More recently, Chang (2002) studied the influence of various bonded layers on stress

intensity factors of an inclined crack lying in a viscoelastic multi-layered medium under an anti-plane

concentrated load. Chang et al. (2001) discussed the effect of a viscoelastic substrate on a cracked body

under an in-plane concentrated load.

In this study, we use an alternating technique to solve the in-plane stress intensity factor of a crack lying

in an anisotropic elastic thin layer bonded to a viscoelastic substrate. The solution associated with sin-
gularities in dissimilar media is derived from that associated with singularities in the corresponding

homogeneous medium. With the aid of the dual coordinate transformation, a singular integral equation is

solved to obtain the asymptotic solution to a crack with arbitrary orientations. Using the standard solid

model to simulate the viscoelastic constitutive equation and applying an inverse Laplace transform by the

aid of Mathematica software, the real-time stress intensity factors are determined. Numerical examples of

a crack located arbitrarily in a thin layer made of the cortical bone bonded to a viscoelastic substrate made

of the cancellous bone are considered and discussed in detail.
2. Basic formulation for two-dimensional anisotropic elasticity

The generalized Hook�s law connecting strains em and stresses rm for an anisotropic elastic material can

be expressed in the following forms (Leknitskii, 1963):
em ¼ smnrn ðm; n ¼ 1; 2; 3; . . . ; 6Þ; ð1Þ

where smn denotes the second-order compliance tensor. The standard correspondent strains and stresses are
femg ¼ fe11; e22; e33; 2e23; 2e31; 2e12gT

frng ¼ fr11; r22; r33; r23; r31;r12gT
ð2Þ
where the superscript T denotes the transpose of a matrix. The well-developed two-dimensional anisotropic
elastic field can be represented by a stress function involving three stress functions as (Leknitskii, 1963)
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f ðzÞ ¼ ½f1ðz1Þ; f2ðz2Þ; f3ðz3Þ�T ð3Þ

with the arguments
za ¼ x1 þ lax2; ða ¼ 1; 2; 3Þ ð4Þ

where the elastic eigenvalues laða ¼ 1; 2; 3Þ have to satisfy the sixth-order characteristic equation
l2ðlÞl4ðlÞ 	 l23ðlÞ ¼ 0 ð5Þ

with
l2ðlÞ ¼ s44 	 2s45l þ s55l2

l3ðlÞ ¼ 	s24 þ ðs25 þ s46Þl 	 ðs14 þ s56Þl2 þ s15l3

l4ðlÞ ¼ s22 	 2s26l þ ð2s12 þ s66Þl2 	 2s16l3 þ s11l4

ð6Þ
The traction and displacement on the x2-plane of two-dimensional anisotropic elasticity can be written as
t ¼ ½r21; r22; r23�T ¼ 2RfLijf 0
j ðzjÞg

u ¼ ½u1; u2; u3�T ¼ 2RfAijfjðzjÞg
ð7Þ
where i ¼ j ¼ 1; 2; 3 and R denotes the real part of the complex function. The 3· 3 matrices A and L
associated with the elastic constants are defined as (Leknitskii, 1963)
L ¼ fLijg ¼
	l1 	l2 	l3g3

1 1 g3

	g1 	g2 	1

24 35 ð8Þ

A ¼ fAijg ¼
A11 A12 A13

A21 A22 A23

A31 A32 A33

24 35 ð9Þ
where
A11 ¼ s11l2
1 þ s12 	 s16l1 þ g1ðs15l1 	 s14Þ

A21 ¼ s21l1 þ s22=l1 	 s26 þ g1ðs25 	 s24=l1Þ
A31 ¼ s41l1 þ s42=l1 	 s46 þ g1ðs45 	 s44=l1Þ
A12 ¼ s11l2

2 þ s12 	 s16l2 þ g2ðs15l2 	 s14Þ
A22 ¼ s21l2 þ s22=l2 	 s26 þ g2ðs25 	 s24=l2Þ
A32 ¼ s41l2 þ s42=l2 	 s46 þ g2ðs45 	 s44=l2Þ
A13 ¼ g3ðs11l2

3 þ s12 	 s16l3Þ þ s15l3 	 s14
A23 ¼ g3ðs21l3 þ s22=l3 	 s26Þ þ s25 	 s24=l3

A33 ¼ g3ðs41l3 þ s42=l3 	 s46Þ þ s45 	 s44=l3
and
g1 ¼ 	l3ðl1Þ=l2ðl1Þ
g2 ¼ 	l3ðl2Þ=l2ðl2Þ
g3 ¼ 	l3ðl3Þ=l4ðl3Þ
Hereafter, the boldface is used to represent a vector or a matrix throughout this paper unless stated

otherwise.
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2.1. Singularities in a homogeneous medium

Consider a homogeneous medium subjected to a dislocation line, with Burger�s vector b and a line force

p, in the direction perpendicular to x1 	 x2 plane. The stress function of the isolated singularity at the point
ðxD1; xD2Þ in an infinite homogeneous medium is (Eshelby et al., 1953)
f 0ðzÞ ¼ q lnðz	 zDÞ; zDa ¼ xD1 þ laxD2 ð10Þ
The complex coefficient vector q is defined as
q ¼ 1

2p
L	1ðB

�
þ BÞ	1

b	 AðB	1Þ	1
p
�

ð11Þ
where b ¼ uþ 	 u	, p ¼ t	 	 tþ and B ¼ iAL	1.
Next, consider a crack of length 2a lying along the x1-axis subjected to an arbitrary self-equilibrated

traction tsðx1Þ prescribed on its surfaces. This crack problem leads to a Hilbert problem and the singular

stress function can be expressed as (Muskhelishvili, 1953)
Lf 0
0ðzÞ ¼

vðzÞ
2pi

Z a

	a

tsðnÞdn
vðnÞðn 	 zÞ ð12Þ
where the plemelj function vðzÞ is defined as
vðzÞ ¼ ðz	 aÞ	
1
2ðzþ aÞ	

1
2 ð13Þ
For the problem with various crack orientations, a new coordinate system is defined such that its origin

is translated to the central point of the crack ðxc1; xc2Þ and then rotated by an angle h with respect to x1-axis,
as shown Fig. 1. The singular stress function of this new coordinate system can be determined by using

the coordinate transformation, which is expressed as (Ting, 1986)
L�f 0�0 ðz�Þ ¼
v�ðz�Þ
2pi

Z a

	a

t�s ðnÞdn
v�ðnÞðn 	 z�Þ ð14Þ
where the superscript � denotes the variable with respect to the new coordinate. The formula of coordinate

transformation can be shown as
x�i ¼ Rijðxj 	 xcjÞ; i ¼ j ¼ 1; 2; 3 ð15Þ
Note that x�i and xj represent the new and old coordinate system, respectively and xcj denotes the origin of

the new coordinate system with respect to the old coordinate system. Then, the coordinate rotation

coefficient can be expressed as
Fig. 1. Oblique crack coordinate system.
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R ¼ fRijg ¼ ox�i
oxj

� 	
¼

cos h sin h 0

	 sin h cos h 0

0 0 1

24 35 ð16Þ
The complex variable z� in the new coordinate system is defined as
z�a ¼ x�1 þ lax
�
2 ða ¼ 1; 2; 3Þ ð17Þ
with L� ¼ RL, A� ¼ RA, l�
a ¼

la cos h	sin h
la sin hþcos h, a ¼ 1; 2; 3.

The asymptotic solution to the crack tip is of interest for the crack problem. The conventional definition

of stress intensity factors is given by (Irwin, 1957)
K ¼ ½KII KI KIII �T ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
t� ð18Þ
where r ¼ x�1 	 a denotes the radius ahead the crack tip at x�1 ¼ a, and
t� ¼ 2RfL�f 0�0 ðz�Þg ð19Þ

which represents the traction along x�1-axis. Substituting Eq. (19) into Eq. (18) with the aid of Eq. (14), the

stress intensity factor can be expressed as
K ¼ 	1ffiffiffiffiffiffi
pa

p
Z a

	a

ffiffiffiffiffiffiffiffiffiffiffi
aþ n
a	 n

s
t�s ðnÞdn ð20Þ
From Eq. (20), the traction prescribed on the crack surface needs to be determined before solving the

asymptotic solution of the crack tip.

2.2. Singularities in a bimaterial

The solution of singularities in a bimaterial problem can be directly obtained from the substitution of the

solution to that associated with an infinite homogeneous medium by using the technique of analytical

continuation. If the singularities, and f 0ðzÞ for the same singularities embedded in an infinite homogeneous

medium, are taken to be in the upper half space of the bimaterial (see Fig. 2), then the solution can be

assumed as
f ðzÞ ¼ f aðzÞ þ f 0ðzÞ z 2 a
f bðzÞ z 2 b

�
ð21Þ
Fig. 2. A singularity in a bimaterial.
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where f aðzÞ and f bðzÞ are the corresponding analytic functions in the upper half space (region a) and lower

half space (region b), respectively. Assume that the bonding of interface is perfect, then the traction (or

resultant force) and displacement across the interface must be continuous. From Eq. (7), it requires that
La½f aðx1Þ þ f 0ðx1Þ� þ La½�f aðx1Þ þ �f 0ðx1Þ� ¼ Lb
�fbðx1Þ þ Lbf bðx1Þ

Aa½f aðx1Þ þ f 0ðx1Þ� þ Aa½�f aðx1Þ þ �f 0ðx1Þ� ¼ Ab
�fbðx1Þ þ Abf bðx1Þ

ð22Þ
where the suffix a and b indicate the material properties of upper (a) and lower (b) half space, respectively.

One of the important properties of analytical (holomorphic) functions used in the method of analytical

continuous is that if uðzÞ is analytical in an upper half space (or a lower half space), then uð�zÞ is analytical
in a lower half space (or an upper half space). Use of the method of analytical continuation and application

of Eq. (22) leads to
f aðzÞ ¼ Vba
�f 0ðzÞ z 2 a

f bðzÞ ¼ Ubaf 0ðzÞ z 2 b

�
ð23Þ
where
Vba ¼ L
	1

a ðBb þ BaÞ	1ðBa 	 BbÞLa

Uba ¼ L	1
b ½I þ ðBb þ BaÞ	1ðBa 	 BbÞ�La
with Ba ¼ iAaL
	1
a , Bb ¼ iAbL

	1
b .

Substitution of Eq. (23) into Eq. (22) gives the complete solution to a bimaterial subjected to singularities
in the upper half space. If a bimaterial is subjected to singularities in the lower half space, the solution can

be assumed as
f ðzÞ ¼ f aðzÞ z 2 a
f bðzÞ þ f 0ðzÞ z 2 b

�
ð24Þ
and one finds, by the similar procedure,
f aðzÞ ¼ Uabf 0ðzÞ z 2 a
f bðzÞ ¼ Vab

�f 0ðzÞ z 2 b

�
ð25Þ
2.3. Singularities in a bimaterial with the interface at x2 ¼ h

Assume that regions a and b occupied with material a and b, are perfectly bonded along the interface
x2 ¼ h. With x1 	 x2 coordinate system lying off the interface, it needs to reformulate the bimaterial solution

obtained in the previous section. The solution is also assumed as Eq. (21), in which f aðzÞ and f bðzÞ are

introduced to satisfy the continuity of tractions and displacements along the interface x2 ¼ h. By applying

the same arguments used in Eq. (22) to the interface x2 ¼ h, one finds
f aðzÞ ¼ Vba
�f 0ðz	 lahþ �lahÞ z 2 a

f bðzÞ ¼ Ubaf 0ðz	 lbhþ lahÞ z 2 b

�
ð26Þ
Substitution of Eq. (26) into (21) gives the complete solution to a bimaterial subjected to singularities in the

upper half space. If a bimaterial with the interface at x2 ¼ h is subjected to singularities in the lower half

space, f aðzÞ and f bðzÞ are obtained as
f aðzÞ ¼ Uabf 0ðz	 lahþ lbhÞ z 2 a
f bðzÞ ¼ Vab

�f 0ðz	 lbhþ �lbhÞ z 2 b

�
ð27Þ
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Substitution of Eq. (27) into (24) gives the complete solution to a bimaterial subjected to singularities in the

lower half space.
2.4. Singularities in a trimaterial with the interfaces at x2 ¼ 0 and x2 ¼ h

The alternating technique can be employed to analyze a singularity in a trimaterial with two parallel

interfaces at x2 ¼ 0 and x2 ¼ h (see Fig. 3). Since it is difficult to satisfy the continuity conditions along two

interfaces at the same time, the method of analytic continuation should be applied to two interfaces

alternatively.

Assume that regions a, b and c occupied with material a, b and c, respectively are perfectly bonded along

the interfaces x2 ¼ 0 and x2 ¼ h (see Fig. 3). Consider that a trimaterial is subjected to singularities in region

b, the alternating technique is applied to solve the complete solution by considering the following steps.

First, we consider that regions a and b are composed of the same material b and region c of material c.
As in Eq. (21), if f 0ðzÞ is taken to be a homogeneous solution and f 1ðzÞ and f c0ðzÞ are introduced to satisfy

the continuity of displacements and tractions across the interface x2 ¼ 0, Eq. (23) leads to
f 1ðzÞ ¼ Vcb
�f 0ðzÞ þ f 0ðzÞ z 2 a [ b

f c0ðzÞ ¼ Ucbf 0ðzÞ z 2 c

�
ð28Þ
Since this result is based on the assumption that region a is made up of material b. The fields produced

by f 1ðzÞ cannot satisfy the continuity conditions at the interface x2 ¼ h, which lies between the material a
and b.

In the second step, regions b and c are composed of the same material b and region a of material a. f 1ðzÞ
in Eq. (28) having the singular points in region b [ c is treated as a homogeneous solution of material b.
f a1ðzÞ and f b1ðzÞ are introduced to satisfy the continuity of displacements and tractions across the interface

x2 ¼ h, Eq. (27) leads to
f a1ðzÞ ¼ Uabf 1ðz	 lahþ lbhÞ z 2 a
f b1ðzÞ ¼ Vab

�f 1ðz	 lbhþ �lbhÞ z 2 b [ c

�
ð29Þ
in which f a1ðzÞ and f b1ðzÞ can be expressed in term of f 0ðzÞ through Eq. (28). Here �f iðz	 lahþ �lahÞ ¼
f ið�z	 �lahþ lahÞ. Since this result is based on the assumption that region c is made up of material b. The
fields produced by f b1ðzÞ cannot satisfy the continuity conditions at the interface x2 ¼ 0, which lies between
the material b and c.
Fig. 3. A singularity in a trimaterial.
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In the third step, regions a and b are composed of the same material b and region c of material c. f b1ðzÞ in
Eq. (29) having the singular points in region a [ b is treated as a homogeneous solution of material b. f 2ðzÞ
and f c1ðzÞ are introduced to satisfy the continuity of displacements and tractions across the interface x2 ¼ 0.

Accordingly it can be shown from Eq. (23) that
f 2ðzÞ ¼ Vcb
�f b1ðzÞ z 2 a [ b

f c1ðzÞ ¼ Ucbf b1ðzÞ z 2 c

�
ð30Þ
Since this result is based on the assumption that region a is made up of material b. The fields produced

by f 2ðzÞ cannot satisfy the continuity conditions at the interface x2 ¼ h, which lies between the material a
and b.

In the fourth step, regions b and c are composed of the same material b and region a of material a.
Repetitions of second and third step, the stress functions at the regions a, b and c can be finally obtained as
f ðzÞ ¼
f a1ðzÞ þ f a2ðzÞ þ � � � z 2 a
f 1ðzÞ þ f b1ðzÞ þ f 2ðzÞ þ f b2ðzÞ � � � z 2 b
f c0ðzÞ þ f c1ðzÞ þ f c2ðzÞ � � � z 2 c

8<: ð31Þ
If one expresses the stress functions in terms of f 0ðzÞ, Eq. (31) becomes
f ðzÞ ¼

Uab
P1

n¼1 f nðz	 lahþ lbhÞ z 2 aP1
n¼1 f nðzÞ þ Vab

�f nðz	 lbhþ �lbhÞ
h i

z 2 b

Ucbf 0ðzÞ þUcbVab
P1

n¼1
�f nðz	 lbhþ �lbhÞ
h i

z 2 c

8>><>>: ð32Þ
in which the recurrence formula for f nðzÞ is
f nþ1ðzÞ ¼
f 0ðzÞ þ Vcb

�f 0ðzÞ n ¼ 0

VcbVabf nðz	 �lbhþ lbhÞ n ¼ 1; 2; 3; . . .

�
ð33Þ
3. Formulation of viscoelasticity

For a linear viscoelastic material, the strain or stress at any given time is the sum of the individual strain

or stress increments through the respective time intervals during which they have been applied. By

Boltzman�s superposition principle, the relationship between strain and stress can be written in the

hereditary integral (Christensen, 1982),
eijðtÞ ¼
Z t

	1
sijklðt 	 nÞdrklðnÞ ð34Þ
where sijkl is known as creep compliance which can be obtained by the creep test. Eq. (34) can also be

written as
eijðtÞ ¼ sijklð0ÞrklðtÞ þ
Z t

0

s0ijklðt 	 nÞrklðnÞdn ð35Þ
for tP 0 and i; j; k ¼ 1; 2; 3, or in contracted form
emðtÞ ¼ smnð0ÞrnðtÞ þ
Z t

0

s0mnðt 	 nÞrnðnÞdn ð36Þ
where m; n ¼ 1; 2; . . . ; 6.
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Consider that any function gðtÞ and define the Laplace transform of gðtÞ as
ĝðpÞ ¼
Z 1

0

gðtÞe	pt dt ð37Þ
where p denotes the Laplace transform parameter. Taking the Laplace transform of Eq. (36), the strain–

stress relationship becomes
êmðpÞ ¼ ŝmnðpÞr̂nðpÞ ð38Þ
With the definition of Eq. (37), the viscoelastic field corresponding to Eq. (7) can be written as
û ¼ Âf̂ ðẑÞ þ Âf̂ ð̂zÞ

t̂ ¼ bLf̂ 0ð̂zÞ þ bLf̂ 0ðẑÞ ð39Þ
where all coefficients in the Eq. (39) can be obtained by a simple alternation from the previous definition,

for example
ẑa ¼ x1 þ l̂ax2 ða ¼ 1; 2; 3Þ ð40Þ
and
l̂2ðl̂Þ̂l4ðl̂Þ 	 l̂23ðl̂Þ ¼ 0 ð41Þ
where
l̂2ðl̂Þ ¼ ŝ44 	 2ŝ45l̂ þ ŝ55l̂2

l̂3ðl̂Þ ¼ 	ŝ24 þ ðŝ25 þ ŝ46Þl̂ 	 ð̂s14 þ ŝ56Þl̂2 þ ŝ15l̂3

l̂4ðl̂Þ ¼ ŝ22 	 2ŝ26l̂ þ ð2ŝ12 þ ŝ66Þl̂2 	 2ŝ16l̂3 þ ŝ11l̂4

ð42Þ
It is easily shown that the only difference between the viscoelastic and elastic representations is that ŝmn
appears in the viscoelastic set whereas smn appears in the elastic set. Taking the Laplace transform of the

viscoelastic set produces a set of equations which correspond in a one-to-one fashion to the elastic set. This

is called a correspondence principle (Christensen, 1982, 1984).

Referring to Fig. 4, consider a thin cracked layer (region b) bonded to a viscoelastic substrate (region c)
under an arbitrary concentrated force (P). By letting region a be non-existent, the problem of a trimaterial
subjected to singularities in region b is now reduced to the present problem of a thin cracked layer bonded

to a viscoelastic substrate under an arbitrary concentrated force. From the previous definition, the Laplace

transformed stress intensity factor is given as
bK ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
t̂� ð43Þ
where
t̂� ¼ 2R bL�
b f̂

0
bðẑÞ

n o
ð44Þ
with
f̂ 0bðẑÞ ¼
X1
n¼1

f̂ 0
nð̂zÞ

h
þ V̂ab

�̂f
0

nðẑ	 l̂bhþ �̂lbhÞ
i

ð45Þ



Fig. 4. A crack embedded in the thin layer medium with a half space substrate.

1444 C.C. Hsiao et al. / International Journal of Solids and Structures 41 (2004) 1435–1451
in which the recurrence formula for f̂ 0nðẑÞ is
f̂ 0
nþ1ðẑÞ ¼

f̂ 00ðẑÞ þ
bV cb

�̂f
0

0ðẑÞ n ¼ 0bV cb
bV ab f̂

0
nðẑ	 �̂lbhþ l̂bhÞ n ¼ 1; 2; 3; . . .

(
ð46Þ
Note that the 3 · 3 matrices bV ab and bV cb in Eqs. (45) and (46) are now defined as
bV ab ¼ 	bL	1

b
bLb
bV cb ¼ bL	1

b ðbBc þ bBbÞ	1ðbBb 	 bBcÞbLb
Then, the real time stress intensity factor can be directly obtained by taking the inverse Laplace transform

of Eq. (43).
4. Numerical results

Applying the standard solid model to simulate the viscoelastic property, the constitutive equation in

Eq. (36) can be expressed as
emðtÞ ¼ s0mn rnðtÞ
�

þ g
Z t

0

f ðt 	 nÞrnðnÞdn

�
ð47Þ
and
g ¼ ðs1mn 	 s0mnÞ
s0mnk

; f ðtÞ ¼ e	t=k ð48Þ
where k indicates the relaxation constant, s0mn and s1mn denote the creep compliance at t ¼ 0 and time-elapse,

respectively. In the following discussion, we consider an elastic cracked layer made of the cortical bone

(region b) bonded to a viscoelastic substrate made of the cancellous bone (region c) subjected to a con-

centrated force (see Fig. 4). The material properties of the cortical bone and the cancellous bone are listed in
Table 1. Consider a transversely isotropic material, the elements of the compliance tensor can be expressed

as (Leknitskii, 1963)



Fig. 5.

a=h ¼

Table 1

Material properties of a thin layer medium and a half space substrate

E1 (MPa) E2 (MPa) m12 m23 G12 (MPa)

Thin layer (Cortical bone) 20· 103 18.7· 103 0.24 0.29 4.6· 103
Substrate (Cancellous bone) 1· 103 0.8 · 103 0.315 0.35 0.24· 103

k ¼ g ¼ 1
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s11 ¼
E1 	 m212E2

E2
1

; s22 ¼
1	 m223
E2

; s12 ¼ s21 ¼ 	 m12ð1þ m23Þ
E1

;

s44 ¼
2ð1þ m23Þ

E2

; s55 ¼ s66 ¼
1

G12

ð49Þ
where all other elements vanish. Note that the relationship in Eq. (49) can also apply to the viscoelastic
properties of the substrate if one replaces smn in Eq. (49) with s0mn.

In view of Eq. (20), Eq. (43) can be written as
bK ¼ lim
r!0

ffiffiffiffiffiffiffi
2pr

p
t̂� ¼ 	1ffiffiffiffiffiffi

pa
p

Z a
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Mode-I stress intensity factor (KI) for various crack orientations subjected to a horizontal concentrated force ðP ¼ ½	P1; 0�Þ with
0:25.
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where t̂�pðn; pÞ can be derived from Eqs. (44)–(46). Then, the real-time stress intensity factor becomes
Fig. 6.

with a
KðtÞ ¼ 	1ffiffiffiffiffiffi
pa

p
Z a

	a

ffiffiffiffiffiffiffiffiffiffiffi
aþ n
a	 n

s
t�pðn; tÞdn ð51Þ
where t�pðn; tÞ is the inverse Laplace transform of t̂�pðn; pÞ. For a linear viscoelastic problem, t�pðn; tÞ can be

found numerically by the direct inverse method (Christensen, 1982, 1962, 1996). However, the inverse

transform of the present complex equations is not easily treated using the direct inverse method. Hence, the

Mathematica software (Wolfram Research, USA) is used to solve the inverse Laplace transform in this

study. Having the function t�pðn; tÞ at hand, the stress intensity factor in Eq. (51) can be obtained numeri-
cally by dividing the integral path into 2n segments as
KðtÞ ¼ 	1ffiffiffiffiffiffi
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since t�pðn; tÞ is continuous along the integral path 	a < n < a and the integral
R a
	a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ n=a	 n

p
dn exists.

In Eq. (52), hs denotes any arbitrary point within each segment, i.e. 06 hs 6 a=n. It will show that the

numerical method in Eq. (52) produces a very good convergence in the following discussion for nP 100.

The main interest here is to analyze the bone defect where a crack is embedded in the cortical bone
bonded to the cancellous bone having a viscoelastic property. In the following discussion, the center of the

crack with length a=h ¼ 0:25 is fixed at xc1 ¼ 0, xc2 ¼ 0:5h and the concentrated force is located at xD1 ¼ 0,

xD2 ¼ h (see Fig. 4). All the calculated results are, which are presented only at the right crack tip, evaluated

with terms up to n ¼ 4 in Eq. (32). The normalized stress intensity factors KI and KII versus the evolution of

time under a negative horizontal concentrated force (P ¼ ½	P1; 0�) with the dimensionless factor

K0 ¼ P1=2
ffiffiffiffiffiffi
pa

p
are shown in Figs. 5 and 6, respectively. For a given crack angle, as shown in Fig. 5, the KI

value converges to its long-time value as time elapses. This convergent value is treated as the elastic re-

sponse. It shows that the KI value increases with time until it approaches a long-time constant value for the
crack angle h ¼ 30�, h ¼ 45� and h ¼ 60� while the KI value almost remains constant as time elapses for the

crack angle h ¼ 90�. It is clear that the effect of cancellous bone is less significant for the stress intensity

factor KI when a crack is placed parallel or normal to the free surface under a horizontal concentrated

force. It also exhibits that, for various crack angles, the maximum KI value occurs at h ¼ 45� and the

minimum KI value at h ¼ 0�. In contrast with the variation of KI in the case of the horizontal loading, the

effect of cancellous bone is more significant for the stress intensity factor KII when a crack is placed parallel

(h ¼ 0�) or normal (h ¼ 90�) to the free surface. In addition, the maximum KII value occurs at h ¼ 0� and
the minimum occurs at h ¼ 45�. The normalized stress intensity factors KI and KII versus the evolution of
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Fig. 7. Mode-I stress intensity factor (KI) for various crack orientations subjected to a vertical concentrated force ðP ¼ ½0; P2�Þ with
a=h ¼ 0:25.
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time under a vertical concentrated force (P ¼ ½0; P2�) are shown in Figs. 7 and 8, respectively. Fig. 7 shows

that, for a given crack angle h ¼ 0�, h ¼ 30� or h ¼ 60�, the normalized KI increases with time, reaches a

maximum value at a particular time and decreases with time until it approaches a long-time constant value.

This implies that KI has a maximum value during the evolution of time or the change of the substrate
strength. For various crack orientations, the maximum KI value occurs at h ¼ 0� and the minimum value

occurs at h ¼ 90�. When the long-time value is considered, the maximum KI value still occurs at h ¼ 0�. The
normalized KII values are shown in Fig. 8, which remain nearly unchanged during the evolution of time for

the crack angle h ¼ 0� and h ¼ 90�. It means that the effect of cancellous bone is less significant for

the stress intensity factor KII when a crack is placed parallel or normal to the free surface under a verti-

cal concentrated force. As in the case of KI, where the maximum value occurred at h ¼ 45� under a hori-

zontal concentrated force, the maximum KII value is found to occur at h ¼ 45� under a vertical

concentrated force.
In order to demonstrate the accuracy and convergence of our present derived solutions, we consider the

following two testing examples. First, we consider a dislocation in a GexSi1	x epilayer on a Si substrate. The

elastic constants of Ge, Si, and GexSi1	x with respect to the crystallographic axes, where x represents

the fraction of lattice sites occupied by Ge atoms, are given in Table 2 (Zhang, 1995). The image force in x2
direction per unit length of a dislocation in material b due to two parallel interfaces in a trimaterial is given

by
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Fig. 8. Mode-II stress intensity factor (KII) for various crack orientations subjected to a vertical point force ðP ¼ ½0; P2�Þ with

a=h ¼ 0:25.



Table 2

Elastic constants of Ge, Si, and GexSi1	x in unit of GPa (Zhang, 1995) with respect to crystallographic directions

Crystal c11 c12 c44

Ge 128.9 48.3 67.1

Si 165.7 63.9 79.6

GexSi1	x 128:9xþ 165:7ð1	 xÞ 48:3xþ 63:9ð1	 xÞ 67:1xþ 79:6ð1	 xÞ
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f2 ¼ 2bRe Lbhlbi Vcb
�f 00ðsÞ

"(
þ
X1
n¼2

f 0nðsÞ þ Vab

X1
n¼1

�f 0nðs	 lbhþ �lbhÞ
#)

ð53Þ
Fig. 9 displays the image force f2=ffree exerted on the 60� dislocation for x ¼ 0:1, 0.3 and 0.5 with {1 0 0}

plane epitaxy. The normalizing constant ffree is the image force on the dislocation at a distance h from

{1 0 0} free surface in Si half space. The results in Fig. 9, which are evaluated with terms up to n ¼ 3 in

Eq. (32), agree very well with the Fig. 4 of Choi and Earmme (2002a).

Next, we consider a crack of length 2a embedded in an elastic isotropic homogeneous medium subjected

to a point force P acting on its surface. The exact solution for stress intensity factors at the right-hand tip
are given as (Sih et al., 1962)
KI

Ka
¼ 1	 m

2ð1þ mÞ
KII

Ka
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xa=a
1	 xa=a
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Fig. 9. Normalized image forces versus the position of a dislocation.



Table 3

Stress intensity factors for a vertical point force acting on the crack surface with m ¼ 0:335

xa
a

KI=Ka KII=Ka

Theoretical value Numerical value Error % Theoretical value Numerical value Error %

0 1.000 1.000 <0.1 )0.249 )0.246 1.3

0.1 1.106 1.106 <0.1 )0.249 )0.246 1.3

0.2 1.225 1.225 <0.1 )0.249 )0.246 1.3

0.3 1.363 1.363 <0.1 )0.249 )0.246 1.3

0.4 1.578 1.528 <0.1 )0.249 )0.246 1.4

0.5 1.732 1.732 <0.1 )0.249 )0.246 1.4

0.6 2.000 2.000 <0.1 )0.249 )0.245 1.5

0.7 2.380 2.380 <0.1 )0.249 )0.245 1.6

0.8 3.000 3.000 <0.1 )0.249 )0.244 2.0

0.9 4.359 4.359 <0.1 )0.249 )0.240 3.4

Table 4

Stress intensity factors for a horizontal point force acting on the crack surface with m ¼ 0:335

xa
a

KI=Ka KII=Ka

Theoretical value Numerical value Error % Theoretical value Numerical value Error %

0 0.249 0.250 0.3 1.000 1.000 <0.1

0.1 0.249 0.250 0.3 1.106 1.106 <0.1

0.2 0.249 0.250 0.3 1.225 1.225 <0.1

0.3 0.249 0.250 0.3 1.363 1.363 <0.1

0.4 0.249 0.250 0.2 1.578 1.528 <0.1

0.5 0.249 0.249 0.2 1.732 1.732 <0.1

0.6 0.249 0.249 0.1 2.000 2.000 <0.1

0.7 0.249 0.249 0.1 2.380 2.380 <0.1

0.8 0.249 0.248 0.4 3.000 3.000 <0.1

0.9 0.249 0.244 1.9 4.359 4.359 <0.1
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for a horizontal point force and
KI

Ka
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xa=a
1	 xa=a

s
KII

Ka
¼ 	 1	 m

2ð1þ mÞ ð55Þ
for a vertical point force, where Ka ¼ P=2
ffiffiffiffiffiffi
pa

p
and xa indicates the distance between the crack center and the

position of the point force P . Comparisons of the theoretical value and the present numerical long-time
value for the crack surface subjected a vertical and a horizontal point force are shown in Tables 3 and 4,

respectively. These results show that the numerical values of the present study are found to agree very well

with the analytical solution.
5. Conclusion

Based on the alternating technique and the method of analytical continuation, the solution to the

problem with singularities in an anisotropic trimaterial is provided in this study. The trimaterial solution

obtained here can be directly applied to the present problem with a thin layer bonded to a half-plane
substrate. With this fundamental solution, the stress intensity factors for the corresponding crack problem
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are determined by solving the singular integral equation. Based on a correspondence principle, the real-time

stress intensity factors for the corresponding viscoelastic problem can be obtained by taking the inverse

Laplace transform. Some typical examples, including various loading types and crack orientations, are

solved and discussed in detail. The results show that the effect of substrate is more (or less) significant for
the stress intensity factor KII (or KI) when the crack is placed parallel or normal to the free surface under a

horizontal concentrated force. In addition, the maximum KI (or KII) value is found to occur at h ¼ 45� in
the case of a horizontal (or vertical) loading. The obtained results are useful in studying the problem with a

crack embedded in the cortical bone that is bonded to the cancellous bone having a viscoelastic property.
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